Презентация на тему Трансформатор. Передача электрической энергии на расстояние

Здесь Вы можете изучить и скачать урок презентацию на тему Трансформатор. Передача электрической энергии на расстояние бесплатно. Доклад-презентация для класса на заданную тему содержит 23 слайдов. Для просмотра воспользуйтесь проигрывателем, если презентация оказалась полезной для Вас - поделитесь ей с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!
Презентации» Физика» Презентация на тему Трансформатор. Передача электрической энергии на расстояние
500500500500500500500500500500500500500500500500500500500500500500500


Слайды и текст этой презентации
Слайд 1
Описание слайда:
Презентация на тему Трансформатор. Передача электрической энергии на расстояние.

Слайд 2
Описание слайда:
Назначение трансформаторов Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется с помощью трансформаторов.

Слайд 3
Описание слайда:
Устройство трансформатора Трансформатор состоит из замкнутого стального сердечника, собранного из пластин, на который надеты две (иногда и более) катушки с проволочными обмотками.

Слайд 4
Описание слайда:
Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Другая обмотка, к которой присоединяют нагрузку, т.е. приборы и устройства, потребляющие электроэнергию, называется вторичной. Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Другая обмотка, к которой присоединяют нагрузку, т.е. приборы и устройства, потребляющие электроэнергию, называется вторичной.

Слайд 5
Описание слайда:
Трансформатор на холостом ходу Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке.

Слайд 6
Описание слайда:
Мгновенное значение ЭДС индукции e в любом витке первичной или вторичной обмотки одинаково. Согласно закону Фарадея оно определяется формулой Мгновенное значение ЭДС индукции e в любом витке первичной или вторичной обмотки одинаково. Согласно закону Фарадея оно определяется формулой

Слайд 7
Описание слайда:
Если Ф = Фm cos ωt, то Если Ф = Фm cos ωt, то

Слайд 8
Описание слайда:
В первичной обмотке, имеющей N1 витков, полная ЭДС индукции e1 равна N1e. Во вторичной обмотке полная ЭДС индукции e2 равна N2e (N2 – число витков этой обмотки). Отсюда следует, что В первичной обмотке, имеющей N1 витков, полная ЭДС индукции e1 равна N1e. Во вторичной обмотке полная ЭДС индукции e2 равна N2e (N2 – число витков этой обмотки). Отсюда следует, что

Слайд 9
Описание слайда:
Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен модулю ЭДС индукции. Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен модулю ЭДС индукции.

Слайд 10
Описание слайда:
Мгновенные значения ЭДС e1 и e2 изменяются синфазно, поэтому их отношение можно заменить отношением действующих знаний E1 и E2 этих ЭДС или, учитывая равенства |u1| ≈ |e1| и |u2| = |e2|, отношением действующих значений напряжений U1 и U2: Мгновенные значения ЭДС e1 и e2 изменяются синфазно, поэтому их отношение можно заменить отношением действующих знаний E1 и E2 этих ЭДС или, учитывая равенства |u1| ≈ |e1| и |u2| = |e2|, отношением действующих значений напряжений U1 и U2:

Слайд 11
Описание слайда:
Величина K называется коэффициентом трансформации. При K > 1 трансформатор является понижающим, а при K < 1 – повышающим. Величина K называется коэффициентом трансформации. При K > 1 трансформатор является понижающим, а при K < 1 – повышающим.

Слайд 12
Описание слайда:
Работа нагруженного трансформатора Если к концам вторичной обмотки присоединить цепь, потребляющую электроэнергию, или, как говорят, нагрузить трансформатор, то сила тока во вторичной обмотке уже не будет равна нулю. Появившийся ток создает в сердечнике свой переменный магнитный поток, который уменьшает изменения магнитного потока в сердечнике.

Слайд 13
Описание слайда:
Но уменьшение амплитуды колебаний результирующего магнитного потока должно, в свою очередь, уменьшить ЭДС индукции в первичной обмотке. Однако это невозможно, так как |u1| ≈ |e1|. Поэтому при замыкании цепи вторичной обмотки автоматически увеличивается сила тока в первичной обмотке. Его амплитуда возрастает таким образом, чтобы восстановить прежнее значение амплитуды колебаний результирующего магнитного потока. Но уменьшение амплитуды колебаний результирующего магнитного потока должно, в свою очередь, уменьшить ЭДС индукции в первичной обмотке. Однако это невозможно, так как |u1| ≈ |e1|. Поэтому при замыкании цепи вторичной обмотки автоматически увеличивается сила тока в первичной обмотке. Его амплитуда возрастает таким образом, чтобы восстановить прежнее значение амплитуды колебаний результирующего магнитного потока.

Слайд 14
Описание слайда:
Увеличение силы тока в цепи первичной обмотки происходит в соответствии с законом сохранения энергии: отдача электроэнергии в цепь, присоединенную ко вторичной обмотке трансформатора, сопровождается потреблением от сети такой же энергии первичной обмоткой. Мощность в первичной цепи при нагрузке трансформатора, близкой к номинальной, приблизительно равна мощности во вторичной цепи: Увеличение силы тока в цепи первичной обмотки происходит в соответствии с законом сохранения энергии: отдача электроэнергии в цепь, присоединенную ко вторичной обмотке трансформатора, сопровождается потреблением от сети такой же энергии первичной обмоткой. Мощность в первичной цепи при нагрузке трансформатора, близкой к номинальной, приблизительно равна мощности во вторичной цепи:

Слайд 15
Описание слайда:
Это означает, что, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем силу тока (и наоборот). Это означает, что, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем силу тока (и наоборот).

Слайд 16
Описание слайда:
Передача электроэнергии Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.

Слайд 17
Описание слайда:
Передача энергии связана с заметными потерями. Дело в том, что электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля-Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой Передача энергии связана с заметными потерями. Дело в том, что электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля-Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой

Слайд 18
Описание слайда:
При очень большой длине линии передача энергии может стать экономически невыгодной. Значительно снизить сопротивление линии практически весьма трудно. Поэтому приходится уменьшать силу тока. При очень большой длине линии передача энергии может стать экономически невыгодной. Значительно снизить сопротивление линии практически весьма трудно. Поэтому приходится уменьшать силу тока.

Слайд 19
Описание слайда:
Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, в высоковольтной линии передачи Волжская ГЭС – Москва и некоторых других используют напряжение 500 кВ. Между тем генераторы переменного тока строят на напряжения, не превышающие 16-20 кВ. Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, в высоковольтной линии передачи Волжская ГЭС – Москва и некоторых других используют напряжение 500 кВ. Между тем генераторы переменного тока строят на напряжения, не превышающие 16-20 кВ.

Слайд 20
Описание слайда:
Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов. Поэтому на крупных электростанциях ставят повышающие трансформаторы. Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов. Поэтому на крупных электростанциях ставят повышающие трансформаторы.

Слайд 21
Описание слайда:
Обычно понижение напряжения и соответственно увеличение силы тока происходят в несколько этапов. На каждом этапе напряжение становится все меньше, а территория, охватываемая электрической сетью, - все шире. Обычно понижение напряжения и соответственно увеличение силы тока происходят в несколько этапов. На каждом этапе напряжение становится все меньше, а территория, охватываемая электрической сетью, - все шире.

Слайд 22
Описание слайда:
При очень высоком напряжении между проводами начинается разряд, приводящий к потерям энергии. Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными. При очень высоком напряжении между проводами начинается разряд, приводящий к потерям энергии. Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.

Слайд 23
Описание слайда:
Thanks for Attention 


Скачать урок презентацию на тему Трансформатор. Передача электрической энергии на расстояние можно ниже:

Похожие презентации